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Abstract 

 

It is well known that there is a need to develop technologies to achieve thermal comfort in 

buildings lowering the cooling and heating demand. Research has shown that thermal energy 

storage (TES) is a way to do so, but also other purposes can be pursued when using TES in 

buildings, such as peak shaving or increase of energy efficiency in HVAC systems. This paper 

reviews TES in buildings using sensible, latent heat and thermochemical energy storage. 

Sustainable heating and cooling with TES in buildings can be achieved through passive 

systems in building envelopes, Phase Change Materials (PCM) in active systems, sorption 

systems, and seasonal storage. 

 
Keywords: thermal energy storage (TES); buildings; sensible heat storage; latent heat storage; 
passive; active. 
 
 
1. Introduction 

 

It is well known that the use of adequate thermal energy storage (TES) systems in the building 

and industrial sector presents high potential in energy conservation [1]. The use of TES can 

overcome the lack of coincidence between the energy supply and its demand; its application 

in active and passive systems allows the use of waste energy, peak load shifting strategies, and 

rational use of thermal energy [2]. Advantages of using TES in an energy system are the 

increase of the overall efficiency and better reliability, but it can also lead to better economics, 

reducing investment and running costs, and less pollution of the environment and less CO2 

emissions [3]. 

 

Storage concepts applied to the building sector have been classified as active or passive 

systems [4]. Passive TES systems can enhance effectively the naturally available heat energy 

sources in order to maintain the comfort conditions in buildings and minimize the use of 
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marble, granite, clay, sandstone, and polymers (PUR, PS, PVC) are also widely used. 

Thereby, waste materials from several industrial processes with proper thermophysical 

properties are becoming suitable candidates to be used for sensible heat TES [15,16]. 

 

Sensible heat storage has two main advantages: it is cheap and without the risks derived from 

the use of toxic materials. Moreover, the material used to store energy is contained in vessels 

as bulk material, thereby facilitating the system design. The main drawback of the application 

of sensible heat storage in the building sector is the high volume that it would require 

depending on the amount of desired heat stored from the active or passive technology [18]. 

 

The energy storage density increases and hence the volume is reduced, in the case of latent 

heat storage (Figure 1b) [18]. The incorporation of phase change materials (PCM) in the 

building sector has been widely investigated by several researchers [17,18]. PCM are 

classified as different groups depending on the material nature (paraffin, fatty acids, salt 

hydrates, etc.). Each material presents their own advantages and limitations, so its selection 

has to be done based on the application requirements. Paraffins and fatty acids present no 

subcooling, low hysteresis and are more stable than the salt hydrate which can present 

segregation after cycling [19]. The main disadvantages of the paraffins and fatty acids are 

their low thermal conductivity, which might be enhanced using thin encapsulation, 

maximizing the heat transfer area or using a graphite-matrix [20]. Moreover, the prevention of 

fire hazards has to be considered when using these materials, therefore recently the addition of 

fire retardants has been investigated [21].  

 

These materials make use of the latent heat between the solid and liquid phase change, and 

must be encapsulated or stabilized for a technical use in any building systems, either active or 

passive. Thus can be achieved using a direct inclusion in the wall [22], by impregnation in a 

porous material as gypsum [23], by using microencapsulation techniques [24], using a shape-

stabilization [25] or slurries of PCM suspended on a thermal fluid [26]. The encapsulation is a 

key issue for the implementation of these technologies in the buildings and must be designed 

to avoid leakage and corrosion. 

 

Finally, the thermochemichal materials (TCM) store and release heat by a reversible 

endothermic/exothermic reaction process (Figure 1c). During the charging process, heat is 
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applied to the material A, resulting in a separation of two parts B+C. The resulting reaction 

products can be easily separated and stored until the discharge process is required. Then, the 

two parts B+C are mixed at a suitable pressure and temperature conditions and energy is 

released. Even though this method is the most energy-efficient, they are under developing 

phase and there are no real applications implemented in the building sector [27]. Within this 

context, this technology has to overcome important barriers such as corrosion, poor heat and 

mass transfer performance and materials development [28]. The high energy density of these 

processes and the lack of heat gains or losses during the storage period, makes the method 

suitable for seasonal storage applications. 

 
 
3. Passive technologies 

 

The use of TES as passive technology has the objective to provide thermal comfort with the 

minimum use of HVAC energy [29]. When high thermal mass materials are used in buildings, 

passive sensible storage is the technology that allows the storage of high quantity of energy, 

giving thermal stability inside the building. Materials typically used are rammed earth, 

alveolar bricks, concrete, or stone [30]. 

 

Standard solar walls, also known as Trombe walls, and solar water walls also use sensible 

storage to achieve energy savings in buildings [31,32]. Solar water walls follow the same 

principle as the standard ones, but the massive part of it is replaced by water containers 

forming the wall.  

 

Much more attention has been paid in the literature to passive thermal energy storage using 

phase change materials. PCM can be incorporated in construction materials using different 

methods, such as direct incorporation, immersion, encapsulation, microencapsulation and 

shape-stabilization [33]. In direct incorporation and immersion potential leakage has to be 

assessed. When the PCM is encapsulated or added in a shape-stabilized new material, a new 

layer appears in the construction system of the wall. 

 

Traditionally, wallboards have been studied as one of the best options to incorporate PCM to 

building walls. Recently, Lee et al. [34] highlighted the importance of experimental validation 

of wallboards and its long time duration. To reduce this duration, the authors presented a new 
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Regarding passive technologies, which are used to maintain a thermal stability and to reduce 

the use of active heating and cooling devices, sensible heat storage has been introduced in 

Trombe and solar water walls. However, the use of PCM has been further investigated so they 

do not require high volume, which is normally a limitation in the building sector. Important 

design considerations have to be taken into account if using PCM for passive cooling, such as 

thermal stability or leakage. 

 

Furthermore, the inclusion of TES in active systems has been investigated for the 

implementation of renewable energies for space heating and/or cooling, for improving the 

performance of the current installations and for using peak load shifting strategies. The 

integration of the storage has been done in the core of the building, external facades, 

suspended ceilings, ventilation system, or water tanks. The high cost of these technologies, 

makes crucial the use of smart control techniques in order to enhance their performance and 

make them cost-effective. 

 

TES has very big potential as a key technology to reduce the energy demand of buildings 

and/or to improve the energy efficiency of their energy systems. Several groups and 

associations (i.e. IEA, RHC Platform, EASE) have highlighted this potential and have even 

given the points that need to be further studied to achieve this potential. Some of these 

challenges are to reduce the cost, to increase the compactness of the systems, to increase the 

energy density of the materials and systems, to increase the thermal conductivity of the 

materials, and to develop new materials, especially fluids that can act as heat transfer fluids 

and storage material at the same time. 
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